The Totem Multiple-Ring Ordering and
Topology Maintenance Protocol

D. A. AGARWAL, L. E. MOSER, P. M. MELLIAR-SMITH, and R. K.
BUDHIA

University of California

The Totem multiple-ring protocol provides reliable totally ordered delivery of messages across
multiple local-area networks interconnected by gateways. This consistent message order is
maintained in the presence of network partitioning and remerging, and of processor failure
and recovery. The protocol provides accurate topology change information as part of the global
total order of messages. It addresses the issue of scalability and achieves a latency that
increases logarithmically with system size by exploiting process group locality and selective
forwarding of messages through the gateways. Pseudocode for the protocol and an evaluation
of its performance are given.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—network communications; C.2.2 [Computer-Communication Net-
works]: Network Protocols—protocol architecture; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—network operating systems; C.2.5 [Computer-Communica-
tion Networks]: Local Networks—rings; D.4.4 [Operating Systems]: Communications
Management—network communication; D.4.5 [Operating Systems]: Reliability—fault-toler-
ance; D.4.7 [Operating Systems]: Organization and Design—distributed systems

General Terms: Algorithms, Performance, Reliability

Additional Key Words and Phrases: Lamport timestamp, network partitioning, reliable
delivery, topology maintenance, total ordering, virtual synchrony

An earlier abbreviated version of the Totem multiple-ring ordering and topology maintenance
protocol appeared in the Proceedings of the International Conference on Network Protocols,
Tokyo, Japan (November 1995).

This research was supported by NSF Grant No. NCR-9016361 and DARPA Contract No.
N00174-93-K-0097 and N00174-95-K-0083.

Authors’ addresses: D. A. Agarwal, Ernest Orlando Lawrence Berkeley National Laboratory, 1
Cyclotron Road, MS 50B-2239, Berkeley, CA 94720; email: daagarwal@lbl.gov; L. E. Moser
and P. M. Melliar-Smith, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106; email: {moser; pmms}@ece.ucsb.edu; R. K. Budhia,
Tandem Computers, Inc., 19333 Vallco Parkway, Cupertino, CA 95014; email:
budhia_ravi@ntos.tandem.com.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1998 ACM 0734-2071/98/0500-0093 $5.00

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998, Pages 93-132.

94 . D. A. Agarwal et al.

1. INTRODUCTION

In a fault-tolerant distributed system, both the processes executing appli-
cation tasks and the data must be replicated to protect against faults, but
inconsistencies in the replicated data can arise if processes receive and
process the same messages in different orders. A reliable totally ordered
delivery protocol that delivers messages in a global total order across the
distributed system makes programming the application considerably sim-
pler than if messages are unordered or only causally ordered. If the
processes holding copies of the replicated data receive the same messages
in the same order, they will update the replicated data in the same order,
thereby preserving replica consistency. Simpler programming increases
system reliability and reduces system development time and cost.

The Totem multiple-ring protocol provides a consistent global total order
on messages transmitted over multiple local-area networks interconnected
by gateways within a local area. A logical token-passing ring is imposed on
each local-area network (LAN) with reliable totally ordered delivery of
messages being provided on each LAN. The protocol also provides detection
of, and recovery from, processor and network faults, as well as topology
maintenance services. Consistency of message ordering is guaranteed, even
if the network partitions and remerges, or if processors fail and restart.
These services are provided for arbitrary topologies and for arbitrarily
intersecting process groups.

The Totem multiple-ring protocol mitigates the effects of large system
size on the latency to message delivery. If a single LAN with a single ring
were used, the latency to message delivery would be linear in the number of
processors on the ring. With multiple rings interconnected by gateways, the
latency to message delivery can be reduced from linear to logarithmic. This
is achieved by structuring the application so that processes communicating
frequently are located on the same LAN and by forwarding messages
through the gateways only if there are processes in the destination group in
the direction of the forwarding. This principle of process group locality with
selective forwarding of messages enables Totem to regain some of the
concurrency that is lost by requiring that messages be delivered in a global
total order, while still providing that high quality of service. While the
Totem multiple-ring protocol provides efficient operation over multiple
LANs within a local area, it is not intended for operation over a wide-area
system, interconnected for example by ATM or the Internet.

As Figure 1 shows, the Totem multiple-ring protocol operates on top of a
protocol, such as the Totem single-ring protocol, that provides reliable
totally ordered message delivery and membership services within a single
LAN. The process group layer operating above the multiple-ring protocol
delivers messages to application processes within process groups and
maintains the process group membership. The service provided to the
application is the same regardless of whether the process group layer is
operating over only the Totem single-ring protocol or over both the Totem
multiple-ring and single-ring protocols.

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 95

The Application

Process Group Interface

Messages delivered Topology and Configuration Change\
in global total order messages delivered in order

Ordered Topology
Change messages

Message ————J Topology TOte!n .
ordering Tm maintenance Multiple-Ring
T T topology ghanges Protocol
Messages delivered
network-wide
Message
forwarding Y,

Messages delivered Local Configuration
in local total order Change messages

Local Reliable Totally-Ordered
Multicast Protocol

Fig. 1. The Totem multiple-ring protocol hierarchy.

In Moser et al. [1996] we presented an overview of the Totem system, and
in Amir et al. [1995] a description of the Totem single-ring ordering and
membership protocol. This article focuses on the Totem multiple-ring
ordering and topology maintenance protocol. An earlier version of the
multiple-ring protocol appeared in Agarwal et al. [1995]; more details,
including proofs of correctness, can be found in Agarwal [1994].

2. RELATED WORK

Reliable totally ordered group communication protocols can be classified as
symmetric or asymmetric, depending on whether all nodes play the same
role or some nodes are distinguished from others.

The most symmetric protocols are those that derive the total order from a
causal order. The causal order protocol of the Isis system [Birman and van
Renesse 1994], the first widely used group communication system and the
first system to provide virtual synchrony, derives the causal order from a
vector clock, which is effective for small groups. The Consul protocol
[Mishra et al. 1993] and the Trans protocol [Melliar-Smith and Moser 1993;
Melliar-Smith et al. 1990] and its derivative, the Lansis protocol of the
Transis system [Amir et al. 1992], form the causal order from acknowledg-
ments piggybacked on messages. The Total protocol [Melliar-Smith et al.
1990; Moser et al. 1993] implemented on top of Trans has the interesting
characteristic that it continues to order messages even in the presence of
faulty processors. The Toto protocol [Dolev et al. 1993] implemented on top
of Lansis has a similar characteristic but, unlike the Total protocol, uses
additional messages for voting. All of the other totally ordered multicast
protocols discussed here block in the presence of processor faults until a

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

96 . D. A. Agarwal et al.

membership algorithm has detected the fault and removed the faulty
processor from the configuration.

Clearly asymmetric are the static sequencer protocols, such as the
protocol of the Amoeba system [Kaashoek and Tanenbaum 1991], in which
messages are transmitted point-to-point to a central sequencer which
multicasts them in order. Disadvantages of the central sequencer approach
are that all messages are transmitted twice and that the sequencer may be
a bottleneck and a single point of failure.

Part way between the symmetric and asymmetric protocols are the
rotating sequencer protocols. Here there are two major subclasses, the
sequencing acknowledgment protocols and the token protocols.

In the sequencing acknowledgment strategy, first described in Chang and
Maxemchuk [1984], processors broadcast messages at will, and unordered.
One processor acts as a sequencer. The sequencer determines an order on
the messages it has received and broadcasts a message that communicates
that order to the other processors. Periodically, the role of the sequencer
moves from one processor to the next in a predetermined order. Sequencer-
based protocols exhibit low latency at low loads but suffer from flow control
problems at high loads. Several reliable totally ordered multicast protocols
have been developed using the sequencer approach, including the two
similar but distinct RMP protocols of Jia et al. [1996] and of Whetten et al.
[1995]. An interesting variation is the Pinwheel protocol of Cristian and
Mishra [1995].

The use of a circulating token to sequence ordered multicasts was
described in Rajagopalan and McKinley [1989]. This technique has been
extensively developed in the Totem single-ring protocol. In these protocols,
only the token holder is allowed to broadcast messages and to determine
the order of the messages that it broadcasts. Reliable totally ordered
multicast protocols based on a token ring can provide high throughput,
good flow control, and rapid detection of faults. However, the latency to
delivery of a message increases linearly with the size of the ring. Interest-
ing variations of the token-based protocols are the Total protocol of the
Horus system described in van Renesse et al. [1996] (quite distinct from the
Total protocol of Melliar-Smith et al. [1990] and Moser et al. [1993]), and
the On-demand protocol of Alvarez et al. [1998]. In these protocols, the
token moves in response to requests for the token, avoiding visits to sites
with nothing to transmit so as to reduce the latency. Buffer management is,
however, more difficult than if the token is passed in a predetermined
fashion.

Also interesting and clearly asymmetric are the Newtop protocol
[Ezhilchelvan et al. 1995] and the Hybrid protocol [Rodrigues et al. 1996].
These protocols are designed for systems in which some communication
links are much slower than others. Typically, a rotating sequencer circu-
lates through sites connected by high-speed links. Sites connected by
low-speed links transmit their messages point-to-point to one of the se-
quencer sites, where they are ordered and multicast. Both the Newtop
protocol and the Hybrid protocol depend on a single set of sites to act as

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 97

Appllcatlon

o /‘\p

Broadcast
Domain

Fig. 2. The elements of the environment in which Totem operates.

sequencers; thus, they are more centralized than the Totem multiple-ring
protocol with its arbitrary topology of interconnected LANSs.

Total ordering of messages by timestamp is an efficient and elegant
approach that depends critically on knowing that all messages with lower
timestamps have been received. The Totem multiple-ring strategy obtains
this knowledge from a local reliable ordered delivery protocol (potentially
any of the protocols cited above).

3. DEFINITIONS AND ASSUMPTIONS

We consider a finite number of LANs that are interconnected by gateways,
as shown in Figure 2. Each LAN is a broadcast domain consisting of a finite
number of processors that communicate by broadcasting messages. Each
processor has a unique identifier, and each has stable storage.

Each gateway consists of two processors, one on each of the LANs that it
connects; communication through a gateway is bidirectional. A gateway
forwards messages between rings and maintains the current view of the
topology. Other than these functions, a gateway behaves exactly like a
processor; in particular, it can send messages from, and deliver messages
to, the application. We use the term processor to mean either processor or
gateway unless explicitly stated otherwise.

Processors may fail and restart, but do not exhibit malicious behavior.
When a processor recovers from a failure, it retains the same identifier it
had before the failure. The processor may have written all or part of its
data into stable storage before it failed. A processor that is excessively
slow, or that fails to receive a message an excessive number of times, can be
regarded as having failed.

The network may become partitioned so that processors in one compo-
nent of the partitioned network are unable to communicate with processors
in another component. Communication between separated components can
subsequently be reestablished.

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

98 . D. A. Agarwal et al.

The communication medium does not corrupt messages maliciously. Each
broadcast message is received immediately (sufficiently promptly that the
broadcast domain does not reorder messages) or not at all by each processor
in the broadcast domain, i.e., it may be received by a subset of the
processors. It is assumed that a processor receives all of its own broadcast
messages and that messages are not dropped within a processor.

Although the broadcast domain does not reorder messages, loss and
retransmission of messages may cause a processor to receive messages out
of order. Consequently, processors within a broadcast domain execute a
protocol that provides reliable totally ordered message delivery and mem-
bership services within the broadcast domain. This protocol can be the
Totem single-ring protocol [Agarwal 1994; Amir et al. 1995] or any other
protocol that provides similar services.

We refer to the set of processors within a broadcast domain that can
communicate with each other as a ring or the membership of a ring, and
use the term configuration to define a particular membership view pro-
vided to the application. More specifically, a ring is a set of processor
identifiers. Each ring has a unique identifier, referred to as the ring
identifier. Ring identifiers are totally ordered so that each new ring
identifier is greater than any ring identifier previously known to the
processors in the membership. Each processor is a member of at most one
ring at a time; a ring may consist of a single processor. Processor failure
and network partitioning result in invocation of the single-ring member-
ship protocol and formation of a new ring.

For the multiple-ring protocol, we use the term topology to mean a set of
rings interconnected by gateways such that there is a communication path
between any two processors that are members of rings in this set. More
specifically, a topology is a set of ring identifiers and a set of gateway
identifiers that represent a connected component of the network. The
topology identifier is the lexicographically ordered list of ring identifiers of
the rings that comprise the topology. Because ring identifiers are unique,
topology identifiers are also unique.

We use the term originate to refer to the generation of a message by the
application when it is broadcast the first time. We distinguish between
receipt and delivery of a message. A message is received from the next
lower layer in the protocol hierarchy and is delivered to the next higher
layer. The originator of a message may specify one of two levels of delivery,
called agreed and safe, defined below. Delivery of a message may be delayed
to achieve the level of service requested by the originator of the message.

Three types of messages are delivered to the application. Regular
messages are originated by the application for delivery to the application. A
regular message is addressed to one or more process groups; the identifi-
ers of those groups are enumerated in the header attached to the message
by the process group layer. A Configuration Change message, delivered
by the single-ring protocol, signals a membership change within a broad-
cast domain. A Topology Change message, delivered by the multiple-ring

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 99

protocol, signals a topology change within the larger network. The Config-
uration Change and Topology Change messages terminate one configura-
tion or topology and initiate another.

3.1 Membership Services

The following membership services are provided by the multiple-ring
topology maintenance algorithm. These services are similar to those pro-
vided by the single-ring membership algorithm [Agarwal 1994; Amir et al.
1995], except that they define topologies system-wide rather than configu-
rations for a local broadcast domain. The multiple-ring protocol provides
the following services:

(1) Delivery of Topology Change Messages: Each topology change is sig-
naled by delivery of a Topology Change message by the membership
algorithm. The Topology Change message contains a topology identifier
and the membership of the new topology.

(2) Uniqueness of Topologies: Each topology identifier is unique; moreover,
at any time a processor is a member of a ring in at most one topology.

(8) Termination: If a topology ceases to exist for any reason, such as
processor failure or network partitioning, then every processor that is a
member of a ring of that topology will install a new topology, or will fail
before doing so.

(4) Topology Change Consistency: Processors that are members of rings in
the same topology T, deliver the same Topology Change message to
begin the topology. Furthermore, if two processors install a topology T',
directly after T';, then the processors deliver the same Topology Change
message to terminate T'; and initiate T',.

3.2 Reliable Totally Ordered Delivery Services

The multiple-ring ordering algorithm provides the services of reliable
totally ordered message delivery across multiple LANs. These services are
similar to those provided for the single-ring protocol, except that they now
apply to multiple LANSs interconnected by gateways.

We define a causal order that is similar to Lamport’s definition [Lamport
1978], but that is defined in terms of messages, rather than events, and
with respect to a particular topology, rather than across all configurations.

(1) Causal Order for a Topology: For a given topology 7 and for all
processors p that are members of T, the causal order for T is the
reflexive transitive closure of the “precedes” relation defined as follows:
—The Topology Change message initiating topology T delivered by p
precedes every message originated by p in 7.

—For each message m, delivered by p in T and each message m,
originated by p in T, if m, is delivered by p before m, is originated,
then m; precedes m,.

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

100 . D. A. Agarwal et al.

—For each message m; originated by p in T and each message m,
originated by p in T, if m, is originated before m,, then m, precedes
my.

—Each message delivered by p in T precedes the Topology Change
message delivered by p to terminate 7.

This definition of causal order allows processors to deliver messages after a
network partition by limiting the causal relationships to the topology in
which the message was originated. It also allows processors in one compo-
nent of a partitioned network to deliver messages without having to deliver
the messages that are delivered in the other components.

Partitioning of the network can result in different sets of messages being
delivered in different components of the network and therefore in different
topologies. Moreover, the processors within a topology do not necessarily
deliver the same last few messages in that topology. However, each
message is delivered by timestamp so that the relative order of any two
messages can be established deterministically by the processors that de-
liver both messages. We define the message delivery order within a
topology and across the entire network in the following manner:

(2) Delivery Order for Topology T: The reflexive transitive closure of the
“precedes” relation for topology 7' defined on the union over all proces-
sors p in T of the sets of regular messages delivered in T by p, as
follows:

—Message m precedes message m, in T if processor p delivers m,in T
before p delivers m, in T.

Proofs that the Delivery Order for Topology T is a total order can be
found in Agarwal [1994]. Again note that, if the network partitions, some
processors in topology T' may not deliver all messages of the Delivery Order
for Topology T'.

(38) Global Delivery Order: The reflexive transitive closure of the union of
the delivery orders for all topologies and of the “precedes” relation
defined on the set of Topology Change messages and regular messages,
as follows:

—Message m; precedes message m, if some processor p delivers m;
before p delivers m,.

Proofs that the Global Delivery Order is a total order can be found in

Agarwal [1994]. The message-ordering services defined below are for all
topologies T' and for all processors p in T'.

(4) Reliable Delivery for Topology T:
—Each regular message m has a unique message identifier.
—If a processor p delivers message m, then p delivers m only once.
—A processor p delivers its own messages unless it fails.

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 101

—If processor p delivers two different messages, then p does not deliver
them simultaneously.

—A processor p delivers all of the messages originated in its current
topology T unless a topology change occurs.

—If processors p and g are both members of consecutive topologies T';
and T, then p and g deliver the same set of messages in T'; before
delivering the Topology Change message that terminates 7'; and
initiates T',.

(5) Delivery in Causal Order for Topology T
—Reliable delivery for topology T'.
—If processor p delivers messages m; and m,, and m, precedes m, in
the causal order for topology 7', then p delivers m, before p delivers
ms.

(6) Delivery in Agreed Order for Topology T
—Delivery in causal order for topology 7.
—If processor p delivers message m, in topology 7' and m; is any
message that precedes m, in the Delivery Order for Topology 7', then
p delivers m, in T before p delivers m,.

(7) Delivery in Safe Order for Topology T
—Delivery in agreed order for topology 7.
—If processor p delivers message m in topology T and the originator of
m requested safe delivery, then p has determined that every proces-
sor in T has received m.

(8) Extended Virtual Synchrony:
—Delivery in agreed or safe order as requested by the originator of the
message.
—If processor p delivers messages m; and m,, and m, precedes m, in
the Global Delivery Order, then p delivers m; before p delivers m,.

Reliable delivery defines which messages a processor must deliver and
basic consistency constraints on that delivery. Agreed order goes further by
defining delivery in a consistent total order for the topology. When a
processor delivers a message in agreed order for a topology, the processor
has delivered all preceding messages in the total order for that topology.
Moreover, all processors that deliver the message in the topology deliver it
at the same point in the total order for the topology.

When a processor delivers a message in safe order for a topology, in
addition to meeting the requirements for agreed delivery, the processor
must know that all of the other processors in the topology have received the
message. The determination of whether a message can be delivered in safe
order for a topology is based on the receipt of acknowledgments from the
other processors in the topology. Once a processor has acknowledged a
message and its predecessors, the processor will deliver the message unless

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

102 . D. A. Agarwal et al.

that processor fails. We cannot require that two processors that deliver a
message as safe necessarily deliver it in the same topology because the
network may partition. Nevertheless, a processor knows the topology in
which it delivered the message as safe, and it knows that each of the other
processors in that topology has received the message and will deliver it
unless that other processor fails.

Extended virtual synchrony [Moser et al. 1994] ensures that messages
are delivered in a consistent total order systemwide, even if the network
partitions and remerges or if processors fail and restart with stable storage
intact. In contrast, virtual synchrony [Birman and van Renesse 1994]
constrains the delivery of messages to processors in a single connected
component of the network, the primary component, even if processors in the
other components have received the messages. Systems based on virtual
synchrony must ensure that only the processors in the primary component
continue to operate after the network partitions. Processors in the other
components are stopped and may deliver messages inconsistently before
they are stopped.

4. THE TOTEM MULTIPLE-RING PROTOCOL

The Totem multiple-ring protocol provides agreed and safe delivery of
messages across multiple interconnected LANSs, as well as topology mainte-
nance services. Delivery of messages in a consistent global total order
across a distributed system is relatively straightforward if membership and
topology changes do not occur. However, addition and removal of proces-
sors, and partitioning and remerging of the network, make the delivery of
messages in a consistent global total order more difficult.

4.1 The Total-Ordering Algorithm

We describe here the operation of the multiple-ring total-ordering algo-
rithm without considering topology changes. In Section 4 we consider the
difficult task of handling topology changes.

The multiple-ring total-ordering algorithm uses timestamps on messages
to create a global total order of messages that respects causality and that is
consistent across the entire network. A processor or gateway maintains a
Lamport (logical) clock, with which it timestamps messages that it origi-
nates, and delivers messages that it has received in timestamp order. A
message-ordering timestamp consists of the timestamp of the message, a
source ring identifier, a message type, and a configuration identifier.
Where no ambiguity can arise, we refer to a message-ordering timestamp
simply as a timestamp. This simple and efficient algorithm is effective
provided that message delivery is reliable and that, when a processor
delivers a message, it can determine that it will not subsequently receive a
message with a lower timestamp.

Within each individual ring, the single-ring protocol provides reliable
totally ordered delivery of messages to processors and gateways. The
single-ring protocol uses sequence numbers to deliver messages reliably to

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol

103

Application
A

Process Group

Interface

Multiple T Totally ordered

; o delivery in
ng I "ﬁ | timestamp order
Protocol 7\
Reliable

Single delivery in
L 2 . sequence

ng number

Protocol I order

N/

Local-Area Network 1

\ 7/

" Local-Area Network 2

Fig. 3. Gateway message path. The messages broadcast to a directly attached ring by a
gateway are messages that were generated by an application process executing at the gateway
or messages that were delivered by the single-ring protocol to the multiple-ring protocol and
were forwarded by a gateway.

the multiple-ring protocol in sequence number order. If a message needs to
be retransmitted, both the sequence number and the timestamp are un-
changed. The gateways forward messages from one ring to the next, if
necessary, in the order in which the single-ring protocol delivers messages
to the gateway, as shown in Figure 3. When a gateway forwards a message
from one ring to the next, it gives the message a new sequence number for
the new ring, but the timestamp of the message remains unchanged.

A processor or gateway can deliver a message in timestamp order only if
it knows that it will not subsequently receive a message with a lower
timestamp. Because messages are delivered by the single-ring protocol in
order and are forwarded by the gateways in order, if a processor receives a
message, it cannot subsequently receive another message that was origi-
nated on the source ring of the message with a lower timestamp. Thus, a
processor can deliver a message in timestamp order if it has received a
message with a higher timestamp from every other ring.

The multiple-ring total-ordering algorithm employs the following local
data structures and message types, which it uses to track the messages
received from each of the rings and to deliver messages in agreed and safe
order.

4.1.1 Local Data Structures. Each processor (and gateway) maintains a
ring_table to record the messages received and to implement total ordering
of messages. The ring_table contains an entry for each ring in the proces-
sor’s current topology and an entry for each new ring that is about to be
added to the current topology, with the following information:

—ring_id: The unique ring identifier generated by the single-ring protocol.

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

104 . D. A. Agarwal et al.

—recv_msgs: A list of messages that were originated on the ring and that
this processor has received and will deliver but has not yet delivered.
This list is sorted in increasing order by timestamp.

—max_timestamp: The highest timestamp of a message such that this
processor has received all messages originated on the ring with lower
timestamps.

—min_timestamp: The lowest timestamp of a message in this processor’s
recv_msgs list for the ring. If recv_msgs is empty, then min_timestamp
equals max_timestamp.

For each directly attached ring (i.e., ring on which it can itself transmit
messages), each processor (and gateway) maintains the following:

—my_guarantee_vector: A vector, with an entry for each ring in this
processor’s current topology, that contains the highest timestamp of a
message that this processor received for that ring.

—my_timestamp: The highest timestamp of any message known to this
processor.

—my_stable_timestamp: The value of the timestamp that this processor
last wrote to stable storage.

—timestamp_interval: A constant that determines how often the timestamp
is written to stable storage.

Each processor (and gateway) maintains:

—cand_msgs: A list containing the lowest entry in this processor’s
recv_msgs list for each of the rings in its ring_table. This list is sorted in
increasing order by message-ordering timestamp, i.e., (timestamp, source
ring identifier, message type, conf_id). If the recv_msgs list is empty, then
the entry in cand_msgs for the ring is (min_timestamp, ring identifier,
regular, 0).

—guarantee_array: An array with a row for each entry in ring_table and a
column for each ring in topology. The entries in a column are timestamps
of messages originated on the corresponding rings. The row for the local
ring contains entries that are the max_timestamp values for the rings. A
row for any other ring in the current topology contains the guarantee
vector that this processor received from a gateway on that ring. A row for
a ring not yet in the current topology contains entries that are the
timestamp at which that ring will be added to the topology.

Each gateway maintains:

—seen_table: A table, with an entry for each ring known to the gateway
that contains the highest timestamp of a message received from that ring
together with the type of that message. This table contains information
derived from all messages received by the gateway to ensure that no
message crosses the gateway more than once.

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 105

—gateway_id: The identifier of the gateway. The gateway_id is chosen
deterministically from the two processor identifiers for the gateway.

When a processor or gateway starts, its my_stable_timestamp and time-
stamp in stable storage are initially 0. The value of timestamp_interval is
determined as a configuration parameter.

When a processor or gateway starts or restarts, it is a member of one ring
for each broadcast domain to which it is interfaced. The number of entries
of my_guarantee_vector is initialized to the number of broadcast domains;
each entry of my_guarantee_vector has an initial timestamp of —1. The
recv_msgs lists are empty, and min_timestamp and max_timestamp are 0.

On receipt of a Configuration Change or Topology Change message
introducing a new ring, a processor or gateway adds the data structure for
the new ring to the ring_table. It obtains the ring_id for the new ring from
the Configuration Change or Topology Change message, as well as the
max_timestamp and min_timestamp. It sets the recv_msgs list for the new
ring to empty, and adds an entry for the new ring to the cand_msgs list and
to the seen_table.

4.1.2 Message Types.

4.1.2.1 Regular Message. Each regular message has a multiple-ring
protocol header containing the following fields:

—src_sender_id: The identifier of the processor that originated the mes-
sage.

—timestamp: The timestamp given the message at origination.

—src_ring_id: The identifier of the ring on which the message was origi-
nated.

—type: Regular.
—conf_id: 0.

The last four fields constitute the identifier of the message. The fields
src_sender_id, timestamp, and src_ring_id are set by the single-ring proto-
col on transmission of the message by the processor that generated the
message. These fields are not changed when a message is forwarded or
retransmitted.

4.1.2.2 Guarantee Vector Message. In addition to the fields of a regular
message, each Guarantee Vector message contains the following field:

—guarantee_vector: The current my_guarantee_vector for a ring containing
the gateway that originated the Guarantee Vector message.

The src_ring_id field of the Guarantee Vector message is set to the ring
identifier of the ring on which the Guarantee Vector message is originated
and sent. The contents of a Guarantee Vector message indicate which
messages have been received from the other rings by the processors and

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

106 . D. A. Agarwal et al.

if my_guarantee_vector{msg.srcring.id] < msg.timestamp then
my_guarantee vector[msg.srcring-id] := msg.timestamp
endif
if msg.timestamp <= ring-table[msg.srcring.id].max_timestamp then
discard message
else
add message to ring.table[msg.srcring.id].recv.msgs
ring_table[msg.srcring.id].max_timestamp := msg.timestamp
if ring_table[msg.srcring-id].recv.msgs contains only one message then
ring_table[msg.src_ring id].min_timestamp := msg.timestamp
update entry for msg.srcring-id in cand-msgs
endif
call deliver_.msgs

endif

Fig. 4. Algorithm executed by a processor or gateway on receipt of a message.

gateways on the ring generating the guarantee vector in the Guarantee
Vector message. This allows messages to be delivered in safe order.
Guarantee Vector messages are forwarded throughout the network, but are
not delivered to the application.

Null messages are transmitted periodically by the gateways to the other
gateways and processors in the network and are not delivered to the
application. The timestamp of a null message assures a recipient that it
will not receive a message with a lower timestamp from the source ring of
the null message. This allows messages to be delivered in agreed order,
even if few or no messages are generated on the ring.

4.1.3 The Algorithm. When a processor receives a message, it sets
my_timestamp to the larger of my_timestamp and the timestamp in the
message. This ensures that the next new message broadcast by the proces-
sor has a higher timestamp than any message that it had previously
received. Pseudocode is shown in Figure 4.

Likewise, when a processor receives the token, it sets my_timestamp to
the larger of my_timestamp and the timestamp in the token. When it
passes the token on to the next processor around the ring, it sets the
timestamp in the token to my_timestamp.

When a processor removes a message from the FIFO buffer containing
the messages from the application, it increments my_timestamp and sets
the timestamp of the message to my_timestamp. It then broadcasts the
message. This ensures that the next new message broadcast by the proces-
sor has a higher timestamp than any message previously broadcast by the
processor.

To ensure that a processor never transmits regular messages with the
same timestamp, even if it fails and subsequently recovers, each processor
maintains the value of my_stable_timestamp on stable storage. If a proces-
sor increments my_timestamp to a value greater than or equal to
my_stable_timestamp + timestamp_interval, it immediately sets my_stable-

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 107

if recv_msgs of low entry in cand.msgs not empty then
cur.msg := the low message in that recv_msgs list
if cur_msg.type = agreed then
deliver cur_msg
else if cur_msg.type = safe then
if for all i guarantee_array[i][curansg.srcring.id] >= cur.msg.timestamp then
deliver cur_msg
endif
endif
call deliveransgs
endif

Fig. 5. Algorithm executed by a processor or gateway to deliver a message.

_timestamp to my_timestamp and writes the value of my_stable_timestamp
to stable storage before taking further action. Thus, a processor never
broadcasts a message with a timestamp greater than my_stable_timestamp
+ timestamp_interval. Although processing is momentarily delayed while
the value of my_stable_timestamp in stable storage is updated, the value of
timestamp_interval can be quite large so that the overall performance
degradation is small.

When a processor starts or restarts after a failure, it first reads the value
of my_stable_timestamp from stable storage. It then sets my_stable_time-
stamp to my_stable_timestamp + timestamp_interval. The processor then
writes the value of my_stable_timestamp to stable storage and waits for the
completion of that write. Finally, it sets my_timestamp to my_stable_time-
stamp. Thus, if a processor fails and recovers, the timestamp of the first
message it broadcasts after recovery is greater than the value of my_stable-
_timestamp (obtained from stable storage) + timestamp_interval. This en-
sures that a processor never broadcasts two regular messages with the
same timestamp even if it fails and recovers.

The delivery of messages in agreed and safe order is discussed below, and
pseudocode is shown in Figure 5.

4.1.3.1 Delivery of Messages in Agreed Order. The key to agreed deliv-
ery is that messages originated on a ring are forwarded by the gateway
through the network in the order in which they are received from the
single-ring protocol. When a message is forwarded, it is given a new
sequence number for the ring onto which it is forwarded, but retains its old
timestamp. On each ring, the single-ring protocol delivers messages to the
multiple-ring protocol in sequence number order. The multiple-ring proto-
col places messages in the ring_table and delivers them to the application
in message timestamp order, i.e., (¢imestamp, src_ring_id, message type,
conf_id).

Because the messages generated on any one ring are forwarded in the
order of their sequence numbers, each processor can record a max_time-
stamp for each ring in its ring_table, which indicates that it has received all
messages from that ring with lower timestamps. If a gateway receives a

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

108 . D. A. Agarwal et al.

message with a timestamp less than the max_timestamp of the source ring
of that message, it discards the message as a redundant message. This
mechanism allows a processor to identify redundant copies of messages
forwarded by different gateways.

A processor can deliver a message in agreed order only if it has delivered
all messages with lower timestamps. To ensure that messages are delivered
in agreed order, even if some messages are delayed, a processor first
determines the lowest entry in cand_msgs. If the recv_msgs list for the ring
with the lowest entry in cand_msgs is empty, the processor can deliver no
further messages until it has received a message from that ring, because
the next message from that ring might have been delayed and may have a
lower timestamp than the messages that it has received from the other
rings. If the lowest entry in cand_msgs corresponds to a message for which
agreed delivery was requested, the processor can deliver the message.

4.1.3.2 Delivery of Messages in Safe Order. In addition to the require-
ments for agreed delivery, safe delivery requires information about
whether the message has been received by all of the processors that require
them. When a processor executing the single-ring protocol delivers a
message in safe order, all of the processors on its local ring have received
the message.

A processor executing the multiple-ring protocol uses my_guarantee_vec-
tor to record, for each directly attached ring, the messages that have been
received from the single-ring protocol. An entry of my_guarantee_vector
corresponding to a particular ring is greater than or equal to the timestamp
of a safe message only if that message has been received by every processor
on that ring.

A gateway periodically transmits Guarantee Vector messages containing
its my_guarantee_vector. When a processor executing the multiple-ring
protocol receives a Guarantee Vector message, it compares the guaran-
tee_vector in the message with the appropriate row of its guarantee_array
and changes an entry of the row to the corresponding guarantee_vector
entry if the vector entry contains a higher timestamp.

To deliver a message in safe order, a processor must wait until all of the
entries in the column of its guarantee_array, corresponding to the ring on
which the message was originated, contain timestamps greater than or
equal to the timestamp of the message. This guarantees (1) that the
message has been received by each processor that should have received it
and (2) that the message will be delivered by that processor unless that
processor fails. Gathering the additional knowledge required for delivery of
a message in safe order may delay delivery of messages with higher
timestamps.

4.1.3.3 Forwarding of Messages. A gateway forwards messages, as it
receives them in agreed order, from one LAN to the next. Whenever it
forwards a message, the gateway updates the last_timestamp and message-
_type fields for the row corresponding to the src_ring_id of the message, in
the seen_table. 1t forwards only those messages that have a greater

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 109

if msg.timestamp > seen_table[msg.srcring.id).timestamp then
seen.table[msg.src.ringid].timestamp = msg.timestamp
forward message

endif

Fig. 6. Algorithm executed by a gateway for the forwarding of messages.

message-ordering timestamp than the last forwarded message from the
same src_ring_id. This ensures that a message that has crossed the
gateway in one direction does not come back in the opposite direction. The
pseudocode for the forwarding of messages is shown in Figure 6.

Example. Consider the network shown in Figure 7, where the rings are
represented by circles and the processors and gateways by squares. A
processor p on ring A is ordering messages from rings A, B, and C. The
first row of the guarantee_array at processor p is the vector of max_time-
stamp values at p. The second and third rows are the guarantee_vectors in
the Guarantee Vector messages for rings B and C.

Processor p can deliver in agreed order the message with timestamp 7
from ring A, the messages with timestamps 9 and 10 from ring B, and the
messages with timestamps 8 and 10 from ring C. After those messages
have been delivered, the min_timestamp and max_timestamp at processor p
for ring C will be set to 10 until it receives further messages from ring C.
The undelivered message with the lowest timestamp is the message from
ring B with timestamp 13, but p cannot deliver that message until it
receives the next message from ring C. Otherwise, p may subsequently
receive a message from ring C with timestamp 12.

If processor p receives the message from ring A with timestamp 7 that
contains a request for safe delivery, then p can deliver that message as safe
because the column of the guarantee_array corresponding to ring A has all
entries at least equal to 7, which indicates that the message is safe on all
rings in the current topology. The same is true for the message from ring B
with timestamp 9 and the message from ring C with timestamp 8. Proces-
sor p cannot, however, deliver the message from ring B with timestamp 10
as safe because the guarantee vector from ring C reports receipt of
messages from B only up through timestamp 9.

4.2 The Topology Maintenance Algorithm

The total-ordering algorithm described above depends on knowledge of the
topology of the interconnected rings. If a new ring becomes connected to
processor p, p must be informed so that it can add the new ring to its
topology. Moreover, p must wait for messages from the new ring; otherwise,
p will prematurely deliver messages with higher timestamps. Similarly, if
a ring becomes disconnected from p, p must be informed so that it can

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

110 . D. A. Agarwal et al.

Data structures at processor p

A: Recv_msgs =7,14,15,26,29
Max_timestamp = 29
Min_timestamp =7

B: Recv_msgs =9,10,13,15
Max_timestamp = 1
Min_timestamp =9 A B | C
Al29 |15 10
C: Recv_msgs =8,10
Max_timestamp = 1 B 14 115 10
Min_timestamp =8 c| 7 9 |10

guarantee array at p

Fig. 7. An example of message ordering. The rings are indicated by circles and the processors
and gateways by squares. The data structures at processor p are also shown. A row of the
guarantee array corresponds to the guarantee vector received from a gateway on the ring.

delete that ring from its topology; otherwise, p will wait for messages from
that ring and stop delivering messages.

When a topology change occurs, it is important that the effect of the
topology change be consistent throughout the set of processors that were
previously able to, and can still, communicate with each other. Even
though the processors learn of the topology change at different physical
times, they must agree on the same logical time for the topology change,
and must agree on the sets of messages to be delivered before and after the
topology change. Local Configuration Change messages and global Topol-
ogy Change messages are timestamped and are delivered in timestamp
order along with the regular messages.

Because it takes time for a message to traverse the network, it is possible
that a message will be affected by a fault reported by a Configuration
Change message whose timestamp is greater than the message timestamp.
If a gateway becomes faulty, rings on the far side of the gateway may
become inaccessible. For each such ring, there is a last message that was
received from that ring before the fault. No message with a larger time-
stamp can be received from that ring, until connectivity is restored.
Consequently, to ensure a consistent view of the topology and to prevent
blocking of the message-ordering algorithm, for each such ring, the topol-
ogy maintenance algorithm generates a Topology Change message report-
ing the disconnection of the ring at that timestamp.

The multiple-ring topology maintenance algorithm employs the following
local data structures and message types.

4.2.1 Local Data Structures. Each processor and gateway maintains:

—neighbors: The neighboring gateways on each of the rings to which this
processor is directly attached. Each neighbor has a timestamp, which is
the timestamp of the Configuration Change message that first identified
the gateway as a neighbor.

Each gateway maintains:

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 111

—topology: The gateway’s view of the current topology, maintained as a
graph with each ring represented as a node and each gateway as an edge.
Unreachable rings and gateways are not included in topology. Each edge
has a timestamp, which is initialized to —1 when the edge is first added
to topology. When a configuration change results in deletion of a gateway,
this timestamp is changed to that of the Configuration Change message,
marking that node for deletion and indicating when it will be deleted
from the graph.

4.2.2 Message Types.

4.2.2.1 Configuration Change Message. A Configuration Change mes-
sage is generated by the single-ring protocol to signal a change in the
membership of a ring. The Configuration Change message informs proces-
sors and gateways of the existence of a new ring and is forwarded by a
gateway after the gateway has forwarded all of the messages from the old
ring. The Configuration Change message is delivered as an agreed message
by the single-ring protocol to the multiple-ring protocol and by the multi-
ple-ring protocol to the process group layer. It contains the following fields:

—timestamp: The highest timestamp of a message delivered by a processor
in the new single-ring membership prior to the Configuration Change
message.

—src_ring id: The identifier of the new ring.
—type: Configuration Change.
—conf_id: The identifier of the old ring.

—memb_list: A list of the processor identifiers of the membership of the
new configuration.

—gateways: A vector containing an entry for each processor in memb_list.
An entry contains a 1 if the associated processor is a gateway and a 0
otherwise.

—gateway_ids: A list containing the gateway_id of each gateway on the new
ring.

The first four fields constitute the identifier of the Configuration Change
message.

4.2.2.2 Network Topology Message. A Network Topology message is
transmitted by a gateway on a directly attached ring that experienced a
configuration change. The Network Topology message is not delivered to
the application and is not forwarded by the multiple-ring protocol. It
informs the other gateways and processors on the ring about the part of the
network connected to the ring by the gateway. The Network Topology
message is necessary when the components of a partitioned network
remerge or when gateways or processors are added to the ring. It contains
the following fields:

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

112 . D. A. Agarwal et al.

—timestamp: The timestamp of the associated Configuration Change mes-
sage.

—src_sender_id: The processor identifier (on the ring that experienced the
configuration change) of the gateway that originated the message.

—type: Network Topology.

—gateway_id: The processor identifier (on the ring that did not experience
the topology change) of the gateway that originated the message.

—topology: The gateway’s current view of the topology including all rings to
which it is connected, except the ring that experienced the configuration
change.

4.2.2.3 Topology Change Message. A Topology Change message is trans-
mitted by a gateway to notify the other gateways and processors in the
network of a change in the topology due to a configuration change. The
Topology Change message is forwarded and delivered in total order along
with the regular messages. A Topology Change message is also generated
and delivered locally by a processor (not a gateway) when it receives a
Configuration Change message for its own directly attached ring. The local
view of the topology is updated when the Topology Change message is
delivered to the application. A Topology Change message is transmitted
with a request for agreed delivery. It contains the following fields:

—timestamp: The timestamp of the corresponding Configuration Change
message if the Topology Change message adds one or more rings;
otherwise, the max_timestamp of the ring to be deleted.

—src_ring_id: The src_ring_id of the corresponding Configuration Change
message or the ring_id of the ring to be deleted if the topology change
consists of a ring deletion only and a message has been received from
that ring, or the src_ring_id of the preceding Topology Change message if
the topology change consists of a ring deletion only and no message has
been received from that ring.

—type: Topology Change.

—conf_id: The conf_id of the corresponding Configuration Change message
or the ring_id of the ring to be deleted if the topology change consists of a
ring deletion only and no message has been received from that ring.

—new_rings: The identifiers of added rings, if any.
—del_rings: The identifiers of deleted rings, if any.
—new_gateways: A list of the gateways added to the topology, if any.

The first four fields constitute the identifier of the Topology Change
message.

Messages are delivered into the global total order defined by the lexico-
graphical order on message-ordering timestamps, i.e., (timestamp, src-

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 113

if ring_table[msg.srcring.id] exists then

discard message

return
endif
if amgateway then

forward Configuration Change message
endif
add entry for msg.srcring.id to ring-table

ring._table[msg.srcring_id].recv.msgs := empty list

ring_table[msg.srcring_id]. max timestamp := msg.timestamp

ring table[msg.srcring.id].min timestamp := msg.timestamp
add msg to ring.table[msg.srcring_id].recv msgs
add row for new ring to guarantee.array with entries equal to msg.timestamp
if msg.srcringid = ring-id of directly connected ring then

update neighbors with msg.gateway ids

mark all new entries in neighbors with msg.timestamp

copy my.guarantee_vector for msg.confid into gvmsg.guarantee vector

if amgateway then

for each gateway_id in msg.gateway.ids do
if gateway.id is in current topology then
mark gateway in topology for deletion at msg.timestamp
endif
endfor

endif
endif
update guarantee.array row for msg.confid with gvmsg.guarantee vector

Fig. 8. Algorithm executed by a processor or gateway on receipt of a Configuration Change
message and an associated Guarantee Vector message.

_ring_id, type, conf_id). The timestamps are integers with the usual order-
ing; the ring identifiers src_ring_id and conf_id are lexicographically
ordered pairs (ring_seq, rep_id), and the message types are ordered by the
relation: Regular < Configuration Change < Topology Change.

4.2.3 The Events of the Topology Maintenance Algorithm. There are five
topology events:

—Receipt of a Configuration Change Message: The Configuration Change
message is created by the single-ring membership algorithm when a
failed processor is removed from the configuration, a new or recovered
processor is added, the network partitions, or the components of a
partitioned network remerge. On receipt of a Configuration Change
message, a processor adds a data structure for the new ring to the
ring_table and the guarantee_array, and inserts the Configuration
Change message into the recv_msgs list corresponding to the source ring
of the message. If a gateway receives a Configuration Change message
indicating that a ring has become disconnected, the gateway transmits a
Topology Change message deleting that ring. Pseudocode is shown in
Figure 8.

—Delivery of a Configuration Change Message: To handle remerging of a
partitioned network, a gateway directly attached to a ring that experi-

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

114 . D. A. Agarwal et al.

if msg.srcring.id # directly connected ring ring.id then
wait for Topology Change message
else
if amgateway then
for each gatewayid in msg.gateway.ids do
if gateway.d is in topology then
delete gateway from topology
endif
endfor
send Network Topology message
endif
if have neighboring gateways then
collect Network Topology messages from all gateways in msg.gatewayids
else
add msg.srcring.id to Topology Change message.new rings
insert msg.conf_id in Topology Change message.del rings
if amgateway then
insert added gateways in Topology Change message.new_gateways
send Topology Change message
endif
endif
deliver Configuration Change and Topology Change messages
endif

Fig. 9. Algorithm executed by a processor or gateway when a Configuration Change message is
the lowest entry in cand_msgs, i.e., the next message to be delivered.

enced a configuration change exchanges topology information with the
other processors and gateways on that ring by transmitting a Network
Topology message. The Network Topology message describes the compo-
nent of the network that is connected to the ring by the gateway, based
on the gateway’s current topology and on the Configuration Change
message. Pseudocode is shown in Figure 9.

—Receipt of a Network Topology Message: When a gateway has received
Network Topology messages from all of the other gateways on the newly
formed ring, it transmits a Topology Change message. The Topology
Change message serves to inform the other processors and gateways in
the network of the change in the topology. Pseudocode is shown in Figure
10.

—Receipt of a Topology Change Message: When a processor or gateway
receives a Topology Change message that it has not previously received,
it accepts the message, inserts the message into the recv_msgs list
corresponding to the source of the message, and forwards the message to
the rest of the network. Duplicate Topology Change messages are dis-
carded. Pseudocode is shown in Figure 11.

—Delivery of a Topology Change Message: When the Topology Change
message is delivered, the local view of the topology is updated. The
Topology Change messages are delivered in total order along with the
regular messages and, thus, are delivered by the processors and gate-

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 115

store as neighbor topology
if have Network Topology msgs from all gateways on new ring then
combine neighbor topologies to determine rings in network
for each ring.id in new rings not already in ring_table do
add ring.d to Topology Change message.new rings
endfor
insert deleted rings in Topology Change message.delrings
discard neighbor topologies
if amgateway then
insert added gateways in Topology Change message.new_gateways
send Topology Change message
endif
add Topology Change message to ring_table[msg.srcring_id].recv.nsgs
endif

Fig. 10. Algorithm executed on receipt of a Network Topology message by a processor or
gateway.

if msg.timestamp < ring_table[msg.srcring-id].min_timestamp or
msg is already in ring.table[msg.srcringid].recv_msgs then
discard msg
return
endif
if amgateway then
forward msg
for each gateway identifier in msg.new _gateways do
if gateway is in topology then timestamp := msg.timestamp
endfor
endif
for each ring_id in msg.new_rings not already in ring_table do
add entry to ring_table for ringid
ring_table[ring id].recv_msgs := empty list
ring_table[ring id].max_timestamp := msg.timestamp
ring_table[ring id].min_timestamp := msg.timestamp
add row for new ring to guarantee array with entries equal to msg.timestamp
endfor
add msg to ring_table[msg.srcringid].recvamsgs
ring_table[msg.src ring_id].max_timestamp := msg.timestamp

Fig. 11. Algorithm executed by a processor or gateway on receipt of a Topology Change
message.

ways in a consistent global total order. The topology information at the
gateways is thus updated consistently. Pseudocode is shown in Figure 12.

4.2.4 Handling a Single Topology Change. First we describe the steps
taken by a processor to handle a single topology change without consider-
ing further topology changes during execution of the topology maintenance
algorithm. Receipt of a Configuration Change message generated by the
single-ring protocol signals a topology change. The gateways are responsi-
ble for determination of the topology change caused by the configuration
change and for dissemination of this information to the other processors

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

116 . D. A. Agarwal et al.

for each ring.id in msg.del rings do
delete ring-table[ringid]
if amgateway then
delete ring.id and connected gateways from topology
endif
delete column and row for ring.id from guarantee array
delete entry for ringid from my_guarantee_vector
endfor
for each ring-id in msg.new_rings do
if amgateway then
add ring to topology
endif
endfor
if amgateway then
for each gateway.id in msg.new_gateways do
delete gateway.id from topology
add gateway.id as edge in topology
endfor
endif
deliver Topology Change message

Fig. 12. Algorithm executed by a processor or gateway on delivery of a Topology Change
message.

and gateways in the network. A gateway determines the new topology by
exchanging topology information with the other gateways on the ring. The
actions taken by the processors and gateways when a topology change
occurs are described in more detail below.

4.2.4.1 Receipt of a Configuration Change Message. A Configuration
Change message serves to inform the processors and gateways in the
network of the new ring identifier and membership. In the total order of
messages, the Configuration Change message precedes all messages origi-
nated on the new ring. In essence, the Configuration Change message
places a marker in the message order for the topology change.

On receipt of a Configuration Change message, a processor sets its
max_timestamp for the old ring to the timestamp of the Configuration
Change message. No messages with higher timestamps will subsequently
be received from the old ring. Advancing max_timestamp ensures that
message ordering will not be obstructed by the lack of such messages.

A processor adds an entry for the new ring to its ring_table with a
min_timestamp and max_timestamp equal to the timestamp of the Config-
uration Change message. It also adds a row to the guarantee_array for the
new ring and sets all entries in that row to the timestamp of the Configu-
ration Change message. These steps ensure that the new data structures
are not subsequently set to inappropriate values that could delay or even
deadlock message ordering. The processor then places the Configuration
Change message in the recv_msgs list for the new ring. The processor also
updates neighbors using the gateway_ids of the Configuration Change
message.

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 117

A gateway also updates the edges in its topology; for each gateway
identifier in gateway_ids, the gateway marks the edge for that gateway
with the timestamp of the Configuration Change message. The edge is thus
known to connect the two rings as of the timestamp of the Configuration
Change message. The timestamps on the edges are used to determine the
rings that must be deleted from the topology to allow delivery of the
Configuration Change message. A gateway delays updating its topology
until the Configuration Change message is the lowest entry in cand_msgs,
i.e., the next message to be delivered. This ensures that the topology
change occurs at the same logical time at all of the processors and
gateways.

A gateway transmits a Topology Change message to delete a ring when it
has received a Configuration Change message that deletes the final connec-
tion to the ring and has delivered all of the messages in recv_msgs for that
ring. The ring can then be deleted because messages are forwarded in
order, and all messages that should have been forwarded from the ring
were forwarded ahead of the Configuration Change message that indicated
the disconnection.

A Topology Change message to delete a ring has a timestamp equal to the
max_timestamp of the ring to be deleted, a src_ring_id equal to the ring_id
of that ring, and contents indicating that the ring is to be deleted.

4.2.4.2 Delivery of a Configuration Change Message. When a Configura-
tion Change message is the next message to be delivered, each gateway on
the ring that experienced the configuration change transmits a Network
Topology message on that ring. The Network Topology message indicates
the gateway’s connected topology, excluding the old ring and the gateways
connected to it. The gateway waits to transmit the Network Topology
message until the Configuration Change message is the next message to be
delivered, to ensure that its topology has been updated to the timestamp of
the Configuration Change message. It does not forward the Network
Topology message.

A processor or gateway delays delivery of a Configuration Change mes-
sage until it has received an associated Topology Change message with the
same timestamp and source ring identifier as the Configuration Change
message (or Network Topology messages from all gateways on the ring with
the same timestamp as the Configuration Change message) and has
generated a Topology Change message.

4.2.4.3 Receipt of a Network Topology Message. The processors and
gateways on a ring that experienced a configuration change are responsible
for determining the topology changes associated with that configuration
change. To accomplish this, each processor and gateway gathers Network
Topology messages from the gateways listed in gateway_ids of the Config-
uration Change message introducing the new ring.

When a gateway has received Network Topology messages from all of the
gateways on the new ring, it merges the topologies in the messages into its
topology. For each ring or gateway newly added to its topology, it records

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

118 . D. A. Agarwal et al.

that ring or gateway in the fields new_rings or new_gateways of a Topology
Change message. It also records any disconnected rings in the field del-
_rings of the Topology Change message. When all ring and gateway
additions and deletions are complete, the gateway transmits the Topology
Change message, which has a timestamp equal to the timestamp of the
Configuration Change message (and of the Network Topology messages)
and source ring identifier equal to the ring identifier of the new ring.

4.2.4.4 Receipt of a Topology Change Message. When a processor or
gateway receives a Topology Change message, it adds the message to the
recv_msgs list corresponding to the source ring of the message, unless the
message is a duplicate in which case it discards the message. If a processor
or gateway accepts the Topology Change message, it adds data structures
to its ring_table and guarantee_array for the previously unknown rings in
the new_rings list of the Topology Change message. Each ring is added to
the ring_table with an empty recv_msgs list. Min_timestamp, max_time-
stamp, and the entries of the row are set to the timestamp of the Topology
Change message. Each ring is also added to the seen_table.

A gateway also marks the edges corresponding to new_gateways in its
topology, with the timestamp of the Topology Change message indicating
that those edges will be deleted from the topology at that timestamp. The
gateway then forwards the Topology Change message to the rest of the
network.

4.2.4.5 Delivery of a Topology Change Message. When a Topology
Change message is the next message to be delivered, a processor or
gateway deletes the entries corresponding to the rings in del_rings from its
guarantee_array, my_guarantee_vectors, and ring_table. It adds a row to
the guarantee_array for each ring in new_rings, and initializes the time-
stamp for each entry in that row to the timestamp of the Topology Change
message.

A gateway also replaces the existing gateways in its topology with the
gateways in new_gateways, adds the rings in new_rings to its topology, and
deletes the rings in del_rings from its topology.

After a processor or gateway has completed processing a Topology
Change message, it delivers the message to the application.

4.2.4.6 Message Ordering during a Topology Change. It is essential that
a newly connected gateway should forward only those messages that have
timestamps greater than the timestamp of the Configuration Change
message that added the gateway to the topology. Thus, when a Configura-
tion Change message for a directly attached ring is pending (received but
not delivered), a processor discards (does not place in its recv_msgs lists)
any message that has a timestamp less than the timestamp of the Config-
uration Change message and that was forwarded onto the ring by a new
gateway. A processor or gateway buffers any message that has a timestamp
greater than the timestamp of the Configuration Change message and that
was broadcast by a new gateway, until after it has delivered the Configu-

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 119

Data structures at gateway q

A: Recv_msgs = 14,15,26,29
Max_timestamp = 29
Min_timestamp = 14

B: Recv_msgs = 13,15
Max_timestamp = 25
Min_timestamp =13

C: Recv_msgs = emply AlBlC
Max_timestamp = 10
Min_timestamp = 10 Al29 25 10
B R 25 B|15 |25 |10
Recv_msgs =
Max imestamp = 25 €l7 9 10
Min_timestamp =25 B'|25 |25 {25

guarantee array at q

Fig. 13. An example of network partitioning, where ring B has partitioned into rings B’ and
B'"'. The rings are indicated by circles and the processors by squares. The data structures at
gateway ¢ are also shown.

ration Change message. Once it has delivered the Configuration Change
message and the associated Topology Change message, it adds the buffered
messages to its recv_msgs lists. A gateway also forwards those messages in
order.

To deliver a message in safe order, a processor or gateway must wait
until it knows that all processors and gateways in its current topology have
received the message. If the network has partitioned and the processor or
gateway does not know that the message has been received by all of the
processors on a disconnected ring (because it has not received a Guarantee
Vector message from that ring), the processor or gateway must delete that
ring from the topology before it can deliver the message in safe order.

4.2.5 Example. Returning to the example in Figure 7, consider what
happens if ring B partitions into rings B’ and B’’, as shown in Figure 13.
The Configuration Change message generated by the processors on ring B’
has timestamp 25. When a processor on ring A or ring B’ receives this
Configuration Change message, it adds an entry for B’ to its ring_table and
a row for B’ to its guarantee_array. The setting of max_timestamp, min_-
timestamp, and the guarantee_array_entries for B’ to 25 ensures that these
new entries do not obstruct the delivery of messages with lower time-
stamps. The data structures at gateway ¢, after it has received the
Configuration Change message, are shown in Figure 13.

When gateway q receives the Configuration Change message, it adds the
message to its recv_msgs list for ring B’ and increases the max_timestamp
for ring B to 25 and increases the corresponding entry in the row for ring B
in the guarantee_array. It then forwards the Configuration Change mes-
sage onto ring A. It cannot yet deliver the Configuration Change message,
because it has not yet received messages beyond timestamp 10 from ring C.
It determines whether ring C would still be reachable, were it to delete

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

120 . D. A. Agarwal et al.

from the topology all of the gateways marked for deletion. Since such
deletions would leave C unreachable, ¢ deletes ring C from its topology.
This is necessary because ¢ may never receive messages from C with
timestamps greater than 10, as there is no forwarding path for those
messages. Thus, ¢ transmits a Topology Change message indicating that
ring C should be deleted at timestamp 10. When the processors on rings A
and B’ deliver this Topology Change message, they delete ring C. This
allows those processors and gateway g to deliver messages beyond times-
tamp 10, in particular the message with timestamp 13 from ring B, the
message with timestamp 14 from ring A, the messages with timestamp 15
from rings A and B, and the Configuration Change message with times-
tamp 25.

When the Configuration Change message is the lowest entry in cand-
_msgs and thus ready to be delivered, gateway q transmits a Network
Topology message with timestamp 25 on ring B’. The message contains the
part of the topology to the left of gateway q, in this case just ring A. If there
were new processors on ring B’, this would also inform them of that part of
the topology. Because g is the only gateway on ring B’, it does not wait for
additional Network Topology messages from other gateways on ring B'.
Instead, ¢ transmits immediately on ring A a Topology Change message
with timestamp 25, indicating the addition of ring B’, the addition of
gateway q, and the deletion of ring B.

The Configuration Change message initiating ring B’ informs the proces-
sors on ring B’ of the gateways on B'. When such a processor has received
Network Topology messages from all of the gateways on ring B’, in this
case just g, it can determine that the current topology consists of ring A
and the new ring B'.

When a processor on ring A or ring B’ delivers the Topology Change
message, it deletes the entry for ring B from its ring_table. In Figure 13 all
entries in the row of the guarantee_array for ring B’ are set to 25 because
no messages have yet been transmitted on that ring. The column for ring B’
will be inserted when the first message originated on ring B’ is received.

4.2.6 Handling Multiple Concurrent Topology Changes. The multiple-
ring membership algorithm does not have control over the order or timing
of topology changes. Topology Change messages and further Configuration
Change messages may arrive before the current Configuration Change
message is delivered. While a processor is waiting for a Network Topology
message from a gateway, the processor may receive a Configuration
Change message indicating that the gateway is no longer present on the
ring. Processing must nevertheless proceed, even though the Network
Topology message may never be received. We now describe the handling of
further Configuration Change messages that arrive before a pending Con-
figuration Change message has been delivered. The rules are individually

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 121

simple and evident, but in combination their consequences are quite
complex.

4.2.6.1 Receipt of a Configuration Change Message. On receipt of a
Configuration Change message, a processor takes the actions described in
handling a single Configuration Change message. If the Configuration
Change message is for a directly attached ring that has a Configuration
Change message pending, a processor may now need fewer Network
Topology messages for the prior Configuration Change message, because
some gateways may no longer be connected to the ring introduced by the
most recent Configuration Change message.

4.2.6.2 Receipt of a Network Topology Message. On receipt of a Network
Topology message, a processor checks whether it has received all of the
Network Topology messages for the pending Configuration Change mes-
sage. It must have Network Topology messages from all of the neighboring
gateways with timestamps equal to the timestamp of the associated Config-
uration Change message; again, subsequent Configuration Change mes-
sages may have reduced this set of gateways. If the processor has received
all of these messages, it takes the actions described for receipt of a Network
Topology message when handling a single topology change.

4.2.6.3 Message Ordering. If there are multiple Configuration Change
messages pending for a single ring, a processor buffers all of the messages
forwarded by new gateways. It removes a message from the buffer when it
delivers the Configuration Change message that adds the new gateway
that forwarded the message. Messages with timestamps less than that of
the Configuration Change message are discarded.

A processor uses the pending Configuration Change messages to deter-
mine whether the ring corresponding to the lowest entry in cand_msgs has
become disconnected so that it will accept no further messages from that
ring. If the lowest entry in cand_msgs requested safe delivery, the proces-
sor uses the pending Configuration Change messages to determine whether
a ring that did not yet guarantee the message as safe has become discon-
nected. Otherwise, the ordering of messages proceeds as in the case of a
single topology change.

4.2.7 Example. We now illustrate how the multiple-ring protocol main-
tains consistent message ordering despite multiple concurrent topology
changes. Consider the network in Figure 14(i), where there are six rings A,
B, C, D, E, and F with five gateways a, b, ¢, d, and e. The first change is
the merging of rings A and F' into the new ring A’'. The Configuration
Change message generated by the processors on ring A’ reports the
configuration change and has timestamp 120 (Figure 14(ii)). The second
change is the partitioning of ring B into rings B’ and B’’. Two Configura-
tion Change messages are generated, one by the processors on ring B’ with
timestamp 125 (Figure 14(iii)) and the other by the processors on ring B"'

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

Network at timestamp 130 Gateway a’s topology at timestamp 120

Fig. 14. An example of deletion of rings. The rings are indicated by circles and the gateways by
line segments. At timestamp 120, rings A and F' merge and become ring A'. At timestamp 125,
ring B’ is formed when ring B partitions, and at timestamp 130 ring B’ is formed by the
remaining processors from ring B. At timestamp 125, gateway a’s recv_msgs list for ring E is
empty, and its max timestamp for ring E is 85. Gateway a then deletes ring E from its
topology at timestamp 85, and ring F' at timestamp 90. Gateway a deletes ring A and adds
rings A’ and E at timestamp 120.

with timestamp 130 (Figure 14(iv)). The gateways forward these Configu-
ration Change messages to the other processors in the network.

In this example, the messages from the processors on ring E are
originally forwarded to gateway a via ring B. At timestamp 120, there is an
additional forwarding path to gateway a from ring E via ring A’. At
timestamp 125, there is only one path to gateway a from ring E via ring A’.
Surprisingly, even though there is a continuous connection between gate-
way a and ring E, it is nevertheless essential for gateway a to delete ring E
temporarily from its topology, as shown at the right of Figure 14 and
explained below.

The guarantee vectors at gateway a , after it has received a Configura-
tion Change message with timestamp 125 for ring B’, are shown in Figure

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 123

Al B |C D E F
A 120, 110100 | 95| 85 | 90
B [120] 125124 |122| 85 | 90
A’ 1200 125124122120 |120
B’ [125 125 |125|125|125 |125

Fig. 15. Example guarantee vectors. Some of the guarantee vectors at gateway a after it has
received the Configuration Change message with timestamp 125, indicating the formation of
ring B’ (Figurel4(iii)).

15. Because gateway a has not yet delivered the Configuration Change
messages for rings A’ and B’, it has not yet changed its view of the
topology. Gateway a buffers the messages forwarded by gateway d to ring
A’ with timestamps greater than 120. It does not forward or add the
buffered messages to its recv_msgs lists until its ordering timestamp
reaches 120 and it has delivered the Configuration Change and Topology
Change messages for ring A’. Gateway a discards messages forwarded by
gateway d to ring A’ with timestamps less than 120. This is essential for
correct ordering of messages. If a were to forward messages with time-
stamp less than 120 onto ring B, those messages might reach ring B before
messages traveling over the previous path through ring C. In particular,
they might arrive before a message with a lower timestamp and, thus,
might be delivered by a processor on ring B before that processor became
aware that the message with the lower timestamp exists.

In this example, we assume that, at timestamp 125, gateway a’s
recv_msgs list for ring E is empty and that its max_timestamp for ring E is
85, indicating that 85 was the timestamp of the last message that it
received from ring E. Gateway a’s view of the topology prior to timestamp
85 is shown in Figure 14(v). When it receives the Configuration Change
message for ring B’ with timestamp 125, gateway a knows that it will no
longer receive messages from ring E via gateway b. Gateway a will not
receive messages from ring E via gateway d with timestamp less than 120,
because gateways a and d were not connected by ring A’ prior to time-
stamp 120. The processors on ring £ may have broadcast messages with
timestamps between 85 and 120, but gateway a will never receive those
messages. Consequently, gateway a must delete ring E from its topology at
timestamp 85 (Figure 14(vi)) to ensure that it will be able to deliver
messages beyond timestamp 85 and to avoid inconsistencies.

To inform the other processors (Figure 14(iii)) of the deletion, gateway a
transmits a Topology Change message with timestamp 85, stating that ring
E should be deleted. Processors on ring B’, and those on ring A’ that were
formerly on ring A, will order this Topology Change message, but proces-

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

124 . D. A. Agarwal et al.

sors on ring A’ that were formerly on ring F' (including gateway d) will
discard it, because the timestamp 85 of the Topology Change message is
less than the timestamp 120 at which rings A and F merged to form ring
A'. Similarly, when gateway a’s ordering timestamp reaches 90, it trans-
mits a Topology Change message deleting ring F' (Figure 14(vii)). It does
not delete rings B, C, and D at this timestamp because its recv_msgs lists
for those rings contain messages up through timestamp 120.

Gateway a waits until its ordering timestamp has reached 120 and then
transmits a Network Topology message on ring A’, indicating that its
current topology outside of A’ consists of rings B, C, and D. When gateway
a receives the Network Topology message with timestamp 120 from gate-
way d, it is informed of the new connection to rings B, C, D, and E via
gateway d, and it adds ring E back into the topology. Gateway a then
transmits a Topology Change message with timestamp 120 (Figure
14(viii)), indicating deletion of ring A and addition of rings A’ and E. When
a processor or gateway orders this Topology Change message, it can
proceed to order messages beyond timestamp 120.

5. IMPLEMENTATION AND PERFORMANCE

The code for the Totem multiple-ring protocol has been written in the C
programming language and runs in user space on Sun workstations,
running SunOS 4.x and Solaris 2.x, on 10 and 100 Mbit/sec Ethernets. The
code uses standard System V calls, standard network interfaces, and does
not preempt the regular process scheduling of the operating system. The
code of Totem is easily ported to other platforms.

5.1 Performance Measurements

The performance measurements given here are for Totem running on Sun
1170 and Sun 2200 workstations, running Solaris 2.5.1, on 100 Mbit/sec
Ethernets. The measurements were taken for a single ring having nine
processors, a two-ring topology having four processors on each ring with a
gateway between the two rings, and a three-ring topology having three
processors on each ring with two gateways (a gateway between the first
and second rings and a gateway between the second and third rings). For
each topology, the processors are Sun 1170s, and the gateways are Sun
2200s. All of the processors generate and receive messages; the gateways
receive and forward, but do not generate, messages. To represent process
group locality and selective forwarding of messages, the system has an
additional parameter, the forwarding probability. At each gateway, as each
message is considered, it is forwarded to the next ring with this probability.

For the measurements, a message size of 1KB was used; the message size
is the actual payload in an Ethernet packet, and does not include either the
46 bytes of UDP/IP/Ethernet packet header or the 68 bytes of Totem
header. All of the performance results are based on the transmission of

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 125

10000 |
Three rings

9000 _| /

8000 _| .
Two rings
7000 |

One ring
6000

5000 |

4000 |

Throughput in Messages per Second

3000

2000

T T T T T T T T

T
0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1.0
Forwarding Probability

Fig. 16. Throughput for the three topologies as a function of forwarding probability.

100,000 messages. During a typical run, 100 to 1,000 messages out of the
100,000 messages were lost and had to be retransmitted.

All of the measurements were done for a deterministic message genera-
tion process. Each processor broadcasts messages at the maximum rate
allowed by the flow control mechanisms, and has its full window size of
messages to broadcast each time it receives the token. No measurements
were made for a Poisson message generation process because the overheads
and inaccuracies of the Unix timer delay mechanism precludes the use of
such a process, even at 1,000 messages per second.

Figure 16 compares the throughput for the three topologies, as a function
of the probability that any particular message is forwarded by a gateway.
The effect of process group locality on the performance of the multiple-ring
topologies is evident from these graphs. For high process group locality and
thus low forwarding probability, the multiple-ring topologies achieve
higher throughputs than the single-ring topology. With a forwarding prob-
ability of 0.1, the throughput for a single ring is 5,337 messages/sec, for the
two-ring topology 7,993 messages/sec, and for the three-ring topology
10,086 messages/sec. If the forwarding probability is higher, or the process-
ing required to forward a message through a gateway takes longer, the
performance advantages of the multiple-ring topologies are reduced.

When considering latency rather than throughput, the advantage of the
multiple-ring topologies is even more evident. Figure 17 compares the
latencies to agreed and safe delivery for the three topologies, as a function
of throughput, for a forwarding probability of 0.1. As the top graph of the
figure shows, the latency to agreed delivery increases slowly as the
throughput increases. The same slow increase can be extended to higher
throughputs, beyond saturation of the single-ring topology by use of two-

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

126 . D. A. Agarwal et al.

30

25]
w 2]
g]
c |
Q i
& 20 -
2

s Three rings
£ 15
S °
[&) -
= 4
g]
3 10 A
~ 0]
s]
2 7
5_

3 .

] Agreed Delivery
0 T T T T T T T T T T T T T T T T

2000 3000 4000 5000 6000 7000 8000 9000 10000
Throughput in Messages per Second

30
8] One ring Two rings Three rings
S
Q i
:
£ b
- 15 o
>]
e
Q |
S o1
= 10 3
O -
(0] _
= B
5
7 Safe Delivery
0 T T T T T T T T T T T T T T T

2000 3000 4000 5000 6000 7000 8000 9000 10000
Throughput in Messages per Second

Fig. 17. The mean latencies to agreed and safe delivery obtained from measurement for one
ring with nine processors, two rings with eight processors and a gateway, and three rings with
nine processors and two gateways in a linear topology. The message generation process is
deterministic, and the forwarding probability is 0.1.

ring and three-ring topologies. As the bottom graph of the figure shows, the
latency to safe delivery exhibits similar characteristics.

With the small number of processors available in our laboratory, the
advantage of multiple-ring topologies is most evident for low forwarding

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 127

probabilities. At higher forwarding probabilities, the benefits of the multi-
ple-ring topologies become more evident for larger numbers of processors.

5.2 Performance Analysis

5.2.1 Mean Latency Analysis. We now consider a simple analysis of the
reduction in the mean latency to agreed delivery that results from structur-
ing the system into multiple rings to exploit process group locality and
selective forwarding of messages. We introduce the following notation:

N Number of processors (not gateways)

M Number of rings

n Diameter of the topology in rings

m Number of processors (not gateways) on a ring

k Number of gateways on a ring

p Probability of forwarding a message through a gateway
t Mean time to forward a message through a gateway

r Mean number of rings on which a message is transmitted
[Mean latency to deliver a message on a particular ring

L Mean latency to deliver a message in the topology

For this analysis we assume that the events of forwarding messages
through different gateways are independent of each other. Moreover, we
assume that, for each source ring, the network structure embeds a complete
binary tree rooted at that ring. The nodes represent all of the rings in the
topology, and the edges represent gateways (though not necessarily all of
them); thus, M = 2" — 1 and m = N/M = N/(2" — 1). The messages
generated by the root node are forwarded down the tree. This analysis is
intended solely for the purpose of demonstrating scalability and does not
consider all possible network structures.

The mean number r of rings on which a message is transmitted is given
by

r=1+2p+4p*+ ... +2"*1=ﬂ.
1-2p

The mean latency [/ to deliver a message at a particular processor on a
particular ring (single-ring latency) is proportional to the number of
processors (and gateways) on that ring multiplied by the mean number of
rings on which a message is transmitted plus the mean time to forward a
message through the gateway and is given by

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

128 . D. A. Agarwal et al.

1200
1000
& 800
<
2
3 g0
§
2 -
ZZOI
o 1 2 3 4 5 6 7 8 8 10
Depth of Embedded Complete Binary Tree
1400
3 200
3 1000
=~
£ g
& & 800
2
k] 600
& 400
200
‘)
o 1 2 3 4 5 6 7 8 9 10 o 1 2 383 4 5 6 7 8 9 W
Depth of Embedded Complete Binary Tree Depth of Embedded Complete Binary Tree

Fig. 18. At the left, the mean latency L as a function of n for various values of ¢ with N =
1024,k = 3,and p = 0.3. At the top right, the mean latency L as a function of n for various
values of p with N = 1024,k = 3,and ¢t = 1.0. At the bottom right, the mean latency L as a
function of n for various values of £ with N = 1024, p = 0.3, and ¢t = 1.0.

l=ci(m +R)r+1t)=c +k +t],
2" —1 1-2p

where c is a proportionality constant. Here the factor m + k reflects the
size of each ring and, thus, the traffic generated on the ring and the time to
deliver messages on the ring. The factor r reflects the increased traffic on
the ring from messages originated on other rings and forwarded to this
ring.

The mean latency L to deliver a message at a particular processor in the
topology (multiple-ring latency) is given by

L =nl =ne((m + k)r +1t) =nc +k +t].
2" — 1 1-2p

Here the factor n reflects the time to gather messages with the current
timestamp, up the binary tree of depth n, so that the message can be
delivered.

Figure 18 explores the values of L as n, p, k, and ¢ are varied. At the left
of the figure, L is shown as a function of n for various values of p with N
= 1024,k = 3,and ¢t = 1.0. For p < 0.5 (exploiting process group local-

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 129

ity and selective forwarding), the smallest values of the latency are
achieved with the largest values of n. A value of p greater than 0.5 is
disadvantageous because the gateways filter few messages, and the same
messages are transmitted on many rings, increasing the load on those
rings. At the top right of the figure, L is shown as a function of n for
various values of £ with N = 1024, p = 0.3, and ¢ = 1.0. Changing the
value of £ does not have a major effect on the latency, but larger values of &
become disadvantageous for large values of n because each ring contains
few processors but many gateways. Larger values of £ correspond to more
tightly interconnected networks. A typical value of & is 3, although there is
little effect on L for values of £ between 1 and 5. At the bottom right of the
figure, L is shown as a function of n for various values of ¢ with N =
1024,k = 3,and p = 0.3. As the time ¢ through a gateway increases, the
latency increases but, for values of ¢ less than 20, the smallest delay is
achieved for the largest values of n. A typical value of ¢ is 1.0.

There is little interaction between p, &, and ¢ in the formula for L. For
p <0.5, k<5, and t < 20, the smallest latency is achieved for the
largest values of n, corresponding to rings containing few processors.
Substituting n = logz(M +1) = logz((N/m) + 1) into the formula for L,

we obtain
N N
1- ((+ 1)pl°g2<m“>)
m

N
L=clog2<+1> (m + k) 19 +t].
m — 4p

From the investigation above, m should be as small as possible (i.e., n as
large as possible) while keeping the value of p less than 0.5. Such a
structure exploits process group locality and selective forwarding of mes-
sages. Thus, by keeping m constant, L scales logarithmically with N.

5.2.2 Probability Density Function Analysis. The mean latency can be
misleading, since some messages may incur much longer latencies than
others. Figure 19 shows the probability density functions for the latencies
to agreed and safe delivery, calculated using a detailed analytic model
[Thomopoulos et al. 1998]. Results are given for 40 processors in one-ring,
two-ring, and four-ring topologies when the forwarding probability is 0.3.
As these graphs indicate, with multiple-ring topologies, not only is the
mean latency reduced, but also the variation in the latency is reduced, a
desirable characteristic for soft real-time systems.

5.3 Dominant Factors Affecting Performance

Today’s multicast group communication protocols, operating over LANSs,
are limited by the processor rather than by the communication medium.
100Mbit/sec Ethernet exceeds the capability of quite expensive worksta-

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

130 . D. A. Agarwal et al.

0.055 T 0.055 T T
ook Agreed Delivery 008 Safe Delivery |
0.045 0.045 1
oo <« Fourrings 004
%‘ 0.035 2 003
c [.
& 003 § o0 <« Fourrings
a a
_é‘ 0.025 > 0.025
5 oo «—— Tworings oo <« Tworings
Q © . .
O 005 -5 0015 Single ring
a a
0.01 . . 0.01
<«——- Single ring
0.005 0.005

Latency in Milliseconds Latency in Milliseconds

Fig. 19. The pdfs for the latencies to agreed and safe delivery for 40 processors on a single
ring, on two-rings with a gateway, and on four rings in a ring-of-rings topology with four
gateways. The message generation process is Poisson, the forwarding probability is 0.3, and
the aggregate throughput is 2000 new messages/sec.

tions, even when those workstations are devoted 100% to communication.
Because most users will wish to allocate the bulk of their processing
resources to the application, rather than to the group communication
protocol, it is unlikely for several years to come that processors will become
fast enough to render inadequate the 1Gbit/sec Ethernet currently being
developed.

In the past, much attention has been given to buffer management and
message copying. Elaborate communication kernels have been designed to
minimize the cost of these activities. However, recent operating systems
have optimized commonly used buffer management system calls, such as
bcopy and malloc. The time spent in these calls is now quite small and is
not a significant factor in the performance of Totem. Rather, the perfor-
mance of Totem is determined almost entirely by context switching. Con-
text switches from user space into the kernel and back to user space are
made whenever a message is received. Processing the token in the single-
ring protocol requires four context switches, two to receive it and two to
transmit it, instead of the two context switches for a regular message. The
performance of the gateways, which are the bottleneck of the multiple-ring
protocol, is restricted primarily by the increased number of context
switches incurred by servicing two rings. Unfortunately, faster processors
do not necessarily provide proportionately faster context switching.

6. CONCLUSION

The Totem multiple-ring protocol provides reliable totally ordered delivery
of messages across multiple local-area networks interconnected by gate-
ways. It achieves a consistent global total order of messages systemwide, in
systems that are subject to network partitioning and remerging and to
processor failure and recovery. It scales well within a local area and
achieves a latency that increases logarithmically with system size. Mes-

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

The Totem Multiple-Ring Ordering and Topology Maintenance Protocol . 131

sages destined for processes in a particular process group are forwarded by
the gateways only to those parts of the network containing members of the
process group. When the system is structured so that the process groups
exhibit a high degree of locality, messages need not be forwarded across the
entire network, and high throughput and low latency are achieved.

ACKNOWLDEGMENTS

The authors wish to thank the anonymous reviewers for their constructive
comments, which have greatly improved this article. The authors also wish
to thank E. Thomopoulos for the graphs of the probability density functions
for the latencies given in Figure 19.

REFERENCES

AGARWAL, D. A. 1994. Totem: A reliable ordered delivery protocol for interconnected local-
area networks. Ph.D thesis, Department of Electrical and Computer Engineering, Univer-
sity of California, Santa Barbara, CA.

AGARWAL, D. A., MOSER, L. E., MELLIAR-SMITH, P. M., AND BUDHIA, R. K. 1995. A reliable
ordered delivery protocol for interconnected local-area networks. In Proceedings of the
International Conference on Network Protocols (Tokyo, Japan, Nov.), 365-374.

ALVAREZ, G., CRISTIAN, F., AND MISHRA, S. 1998. On-demand asynchronous atomic broadcast.
In Proceedings of the 5th IFIP International Working Conference on Dependable Computing
for Critical Applications (Urbana-Champaign, IL, Sept. 1995), R. K. Iyer, M. Morganti, W.
K. Fuchs, and V. Gligor, Eds. IEEE Computer Society Press, Los Alamitos, CA, 119-137.

AMIR, Y., DOLEV, D., KRAMER, S., AND MALKI, D. 1992. Transis: A communication subsystem
for high availability. In Proceedings of the 22nd IEEE International Symposium on
Fault-Tolerant Computing (Boston, MA, July). IEEE Press, Piscataway, NJ, 76—-84.

AMIR, Y., MOSER, L. E., MELLIAR-SMITH, P. M., AGARWAL, D. A., AND CIARFELLA, P. 1995. The
Totem single-ring ordering and membership protocol. ACM Trans. Comput. Syst. 13, 4
(Nov.), 311-342.

BirmaN, K. P. AND VAN RENESSE, R. 1994. Reliable Distributed Computing with the Isis
Toolkit. IEEE Computer Society Press, Los Alamitos, CA.

CHANG, J.-M. AND MAXEMCHUK, N. F. 1984. Reliable broadcast protocols. ACM Trans.
Comput. Syst. 2, 3 (Aug.), 251-273.

CRISTIAN, F. AND MISHRA, S. 1995. The pinwheel asynchronous atomic broadcast protocols.
In Proceedings of the 2nd International Symposium on Autonomous Decentralized Systems
(Phoenix, AZ, Apr.). IEEE Computer Society Press, Los Alamitos, CA, 215-221.

DoLev, D., KRAMER, S., AND MaALKI, D. 1993. Early delivery totally ordered multicast in
asynchronous environments. In Proceedings of the 23rd IEEE International Symposium on
Fault-Tolerant Computing (Toulouse, France, June). IEEE Computer Society Press, Los
Alamitos, CA, 544-553.

EZHILCHELVAN, P. D., MACEDO, R. A., AND SHRIVASTAVA, S. K. 1995. Newtop: A fault-tolerant
group communication protocol. In Proceedings of the 15th IEEE International Conference
on Distributed Computing Systems (Vancouver, Canada, May/June). IEEE Computer Soci-
ety Press, Los Alamitos, CA, 296-306.

J1A, W., KAISER, J., AND NETT, E. 1996. Fault-tolerant group communication. IEEE Micro
16, 2 (Apr.), 59-67.

KaASHOEK, M. F. AND TANENBAUM, A. S. 1991. Group communication in the Amoeba distrib-
uted operating system. In Proceedings of the 11th IEEE International Conference on
Distributed Computing Systems (Arlington, TX, May). IEEE Computer Society Press, Los
Alamitos, CA, 436-447.

LamporT, L. 1978. Time, clocks, and the ordering of events in a distributed system. Com-
mun. ACM 21, 7, 558 -565.

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

132 . D. A. Agarwal et al.

MELLIAR-SMITH, P. M. AND MOSER, L. E. 1993. Trans: A reliable broadcast protocol. IEE
Trans. Commun. 140, 6 (Dec.), 481-493.

MELLIAR-SMITH, P. M., MosgERr, L. E., AND AGRAWALA, V. 1990. Broadcast protocols for
distributed systems. IEEE Trans. Parallel Distrib. Syst. 1, 1 (Jan.), 17-25.

MisHRA, S., PETERSON, L. L., AND SCHLICHTING, R. D. 1993. Consul: A communication
substrate for fault-tolerant distributed programs. Distrib. Syst. Eng. 1, 2 (Dec.), 87-103.
MOSER, L. E., AMIR, Y., MELLIAR-SMITH, P. M., AND AGARWAL, D. A. 1994. Extended virtual
synchrony. In Proceedings of the 14th IEEE International Conference on Distributed
Computing Systems (Poznan, Poland, June). IEEE Computer Society Press, Los Alamitos,

CA, 56-65.

MOSER, L. E., MELLIAR-SMITH, P. M., AGARWAL, D. A., BUDHIA, R. K., AND LINGLEY-PAPADOPOU-
Los, C. A. 1996. Totem: A fault-tolerant multicast group communication system. Com-
mun. ACM 39, 4 (Apr.), 54—63.

MOSER, L. E., MELLIAR-SMITH, P. M., AND AGRAWALA, V. 1993. Asynchronous fault-tolerant
total ordering algorithms. SIAM J. Comput. 22, 4 (Aug.), 727-750.

RajacopaLAaN, B. aAND McKiNLEY, P. K. 1989. A token-based protocol for reliable, ordered
multicast communication. In Proceedings of the 8th IEEE Symposium on Reliable Distrib-
uted Systems (Seattle, WA, Oct.). IEEE Computer Society Press, Los Alamitos, CA, 84-93.

RopricuEs, L. E. T., FonNseca, H., AND VERISSIMO, P. 1996. Totally ordered multicast in
large-scale systems. In Proceedings of the 16th IEEE International Conference on Distrib-
uted Computing Systems (Hong Kong, May). IEEE Computer Society Press, Los Alamitos,
CA, 503-510.

THOMOPOULOS, E., MOSER, L. E., AND MELLIAR-SMITH, P. M. 1998. Analyzing the latency of
the Totem multicast protocols. In Proceedings of the 6th International Conference on
Computer Communications and Networks (Las Vegas, NV, Sept.), 42-50.

VAN RENESSE, R., BIRMAN, K. P., AND MAFFEIS, S. 1996. Horus: A flexible group communica-
tions system. Commun. ACM 39, 4 (Apr.), 76—83.

WHETTEN, B., MONTGOMERY, T., AND KAPLAN, S. 1995. A high performance totally ordered
multicast protocol. In Theory and Practice in Distributed Systems (Dagstuhl Castle,
Germany, Sept. 1994), K. Birman, F. Mattern, and A. Schiper, Eds. Springer-Verlag,
Berlin, Germany, 33-57.

Received: July 1997; revised: January 1998; accepted: February 1998

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998.

